- координатная окрестность
- coordinate neighborhood
Русско-английский физический словарь. 2013.
Русско-английский физический словарь. 2013.
КНЕЗЕРА ТЕОРЕМА — об одномерных слоениях без особенностей на замкнутых поверхностях рода нуль теорема, устанавливающая свойства такого слоения в зависимости от наличия или отсутствия у него замкнутых слоев и описывающая поведение незамкнутых слоев в областях,… … Математическая энциклопедия
РИМАНОВА ГЕОМЕТРИЯ — теория риманова пространства. Р и м а н о в ы м п р о с т р а н с т в о м наз. n мерное связное дифференцируемое многообразие М п, на к ром задано дифференцируемое поле ковариантного, симметрического и положительно определенного тензора gранга 2 … Математическая энциклопедия
МНОГООБРАЗИЕ — множество, точки к рого задаются набором чисел (координат), причём при переходе от точки к точке координаты меняются непрерывно. Локально, т. е. в нек рой окрестности каждой точки, M. устроено так же, как евклидово пространство . (элементы к рого … Физическая энциклопедия
СФЕРИЧЕСКОЕ ОТОБРАЖЕНИЕ — отображение гладкой ориентируемой (гипер)поверхности Mk пространства Ek+l в (единичную) сферу Sk с центром в начале координат Ek+l, сопоставляющее точке точку с радиус вектором (единичной) нормалью к Mk в х. Иначе, С. о. определяется поливектором … Математическая энциклопедия
Поверхность — У этого термина существуют и другие значения, см. Поверхность (значения). Пример простой поверхности Поверхность традиционное название для двумерного многообразия в … Википедия
Касательная плоскость — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Внутренняя геометрия поверхностей — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Внутренняя геометрия поверхности — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Внутренняя геометрия — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Нормальное сечение — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Ориентируемость — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия